						Ye	ar 3							
Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	W	/eek 9	Week 10	Week 11	Week 12	Week 13	Week 14
Autumn 1							Autumn 2							
Place Valu	ıe			Addition 8	& Subtraction	n				Multiplica	ition & Divisi	ion		
Identify, r	epresent and	d estimate n	umbers	Add and s	ubtract numl	pers mentally	y, including:	a thr	ree-	Count fror	m 0 in multip	les of 4, 8, 5	0 and	
				digit numl	per and ones	; a three-digi	it number ar	nd te	ens; a	100.				
Read and	write numbe	ers up to 100	00 in	three-digit	t number and	d hundreds.								
Numerals	and in word	S								Recall and	l use multipli	cation and d	ivision facts	for the 3 <i>,</i> 4
				Add and s	ubtract numl	pers with up	to three dig	its, u	using	and 8 mul	tiplication ta	bles.		
Recognise	the place va	lue of each	digit in a	formal wr	itten method	ls of columna	ar addition a	nd						
three-digi	t number			subtractio	n.					Write and	calculate ma	athematical s	statements f	or
										multiplicat	tion and divi	sion using th	e multiplicat	ion tables
Compare	and order nu	ımbers up to	o 1 000	Estimate t	he answer to	a calculatio	n and use in	verse	se	they know	ı, including fo	or two-digit r	numbers tim	es one-
				operation	s to check an	swers.				digit numb	pers, using m	ental and pr	ogressing to	formal
Solve num	nber problem	is and pract	ical							written me	ethods.			
problems	involving the	ese ideas		Solve prob	olems, includ	ing missing n	number prob	lems	ıs, using					
				number fa	icts, place va	lue, and mor	e complex a	dditi	tion and	Solve prob	olems, includ	ing missing r	number prob	lems,
				subtractio	n.					involving r	multiplicatio	n and divisio	n, including _ا	oositive
Count from	m 0 in multip	les of 4, 8, 5	50 and 100							integer sca	aling probler	ns and corre	spondence p	roblems in
										which n ol	bjects are co	nnected to n	n objectives.	
										White Ros	se End of Ter	m Assessme	ent	

					Ye	ear 3					
Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Spring 1						Spring 2					
Multiplicat	ion & Division		Money	Statistics		Length & P	erimeter		Fractions		
Recall and u	use multiplicat	ion and	Add and	Interpret a	nd present	Measure, c	ompare, add a	nd subtract:	Count up ar	nd down in ten	ths; recognise
division fac	ts for the 3, 4 a	and 8	subtract	data using	bar charts,	lengths (m/	/cm/mm		that tenths	arise from divi	ding an object
multiplicati	on tables.		amounts of	pictograms	and					al parts and in	-
			money to	tables		Measure th	ne perimeter of	f simple 2D	digit numbe	ers or quantitie	es by 10.
	alculate math		give			shapes.					
	for multiplicat		change,		step and two-				_		ns as numbers
	ng the multipli	using both	step questi	-					ns and non-uni	t fractions	
•	y know, including for two-digit		£ and p in	example, 'l	•				with small o	lenominators.	
	mes one-digit ı		practical		l 'How many						
_	al and progres	sing to formal	contexts	fewer?'] us	-					find and write	
written me	tnoas.			scaled bar	n presented in					of objects: un	
Calua muahi	مسالم بالمسانية									it fractions wit	ın smaii
•	ems, including oblems, involvi	_		pictograins	and tables				denominato	ors.	
•	on and division	•							Salva proble	ems that invol	us all of the
•	eger scaling pr								above	enis that invol	ve all of the
•	ence problems								above		
•	connected to										
,		,							White Rose	End of Term	Assessment
									Trinte nose	2 0	

						Year 3						
Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13
Summer 1						Summer 2						
Fractions			Time			Properties	of Shape		Mass & Ca	pacity		
Recognise a	and show, us	ing diagrams,	Tell and wr	ite the time fr	rom an	Recognise	angles as a pr	operty of	Measure, c	ompare, add	and	
equivalent	fractions wit	h small	analogue c	lock, including	g using	shape or a	description of	f a turn.		ngths (m/cm	· · · · · · · · · · · · · · · · · · ·	
denominat	ors.			merals from I t					(kg/g); volu	ime/capacity	(l/ml).	
			12-hour an	d 24-hour clo	cks.		ht angles, rec	_				
	nd order unit					_	ngles make a					
	ns with the sa	ame		nd read time v			e three quarte					_
denominat			_	accuracy to th			complete turr	•	White Rose	e End of Term	n Assessment	tio
	btract fraction			cord and com	•		ngles are grea	ter than or				and Investigation
same deno	minator with	in one whole		econds, minut	es and	less than a	right angle.					/es
			hours.									<u>c</u>
-	lems that inv	olve all of	l				rizontal and v					pue
the above.				ulary such as c		•	of perpendicul	ar and				
				morning, afte	rnoon, noon	parallel lin	es.					Consolidation
			and midnig	•								Pilo
				number of sec			hapes and ma					onsc
				d the number	•	•	ng modelling r					ပိ
			each mont	h, year and lea	ap year.		3-D shapes in ns and describ					
			Compared	urations of ov	onts [for	orientation	is and describ	e them.				
			· ·	lurations of everal calculate the	=							
			· ·	ar events or ta								
			by particul	ai events of to	ין כאכני.							

							Year 4						
Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14
Autumn 1	-						Autumn 2						
Place Valu				Addition 8	& Subtraction	on	Length &	Perimeter		Multiplicat	tion & Divis	ion	
Count in m	ultiples of 6,	7, 9. 25 and 1	.000.		ubtract num				e the perimeter		•	ication and d	
					gits using the			near figure		facts for m	ultiplication	tables up to	12 × 12.
Find 1000 r	more or less t	han a given r	number.		ethods of co				es and metres				
		C 1 1:			nd subtracti	ion where			erent units of	Count in m	ultiples of 6	5, 7, 9. 25 and	1000
	the place valu er (thousands	_		appropriat	te.		- I	for example	e, kilometre to				
ones)	er (triousarius	s, nunureus, i	lens and				metre]					n and derive	
Orics)					and use inve							entally, includ	•
Order and	compare num	nbers beyond	1000		s to check a	nswers to a				. , ,	• •	; dividing by	-
Identify, re	present and e	estimate num	bers using	calculation	n.					multiplying	together to	hree number	S.
different re	epresentation	ıs.		Solvo addi	ition and sul	htraction				Calva prob	المسد اميرمار	in a moultinhuir	-a -nd
					problems in							ing multiplyir g the distribu	•
	number to th	ne nearest 10	, 100 or		vhich operat							bers by one	
1000				_	o use and w						•	ns and harde	•
Solve numb	her and nract	ical nrohlems	that involve	meenouse	.0 450 4114 11	,.				_		ems such as	
	bove and with									•	ted to m ok		00,000
positive nu												,,	
	wards throug	gh zero to inc	lude							White Ros	e End of Te	rm Assessme	ent
negative nu	umbers.												
Dood Da		- 100 / ±- 0\	منا امم										
	an numerals t ime, the num												
	concept of z	-	_										

					1	ear 4					
Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Spring 1						Spring 2					
Multiplicati	on & Division		Area		Fractions				Decimals		
	e multiplication		Find the are	ea of	Recognise a	and show, usin	g diagrams, fai	milies of	Recognise a	nd write decin	nal equivalents
	tiplication tables	·	rectilinear s		common e	quivalent fracti	ons.		of any num	ber of tenths o	r hundredths.
	lue, known and c				Count up a	nd down in hui	ndredths; reco	gnise that	Find the eff	ect of dividing	a one or two-
	divide mentally,	_			hundredths	arise when di	viding an objed	ct by one	digit numbe	er by 10 or 100	, identifying
–	oy 0 and 1; dividing ogether three nu				hundred ar	nd dividing tent	ths by ten.			the digits in the sand hundred	
Pecognice an	nd use factor pair	es and			Solve probl	ems involving	increasingly ha	rder fractions			
_	ty in mental calc				to calculate	quantities, an	d fractions to	divide	Solve simple	e measure and	money
	digit and three-					including non-		vhere the	-	volving fractio	
by a one-digi layout.	t number using f	ormal written			answer is a	whole numbe	r.		decimals to	two decimal p	llaces.
					Add and su	btract fraction	s with the sam	е	Convert bet	ween differen	t units of
adding, inclu to multiply to integer scalir corresponde	Solve problems involving multiplying and adding, including using the distributive law o multiply two-digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.					or.			measure [fo metre]	or example, kild	ometre to
are connecte	ed to m objects.										
									White Rose	End of Term A	Assessment

					Year 4						
Week 1 Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13
Summer 1					Summer 2						
Decimals	Money		Time		Statistics		Properties	of Shape	Position &	Direction	
Compare numbers with the same number of decimal places up to two decimal places. Round decimals with one decimal place to the nearest whole number. Recognise and write decimal equivalents to 14, 12 and 34 Find the effect of dividing a one or two-digit number by 10 or 100, identifying the value of the digits in the answer as ones, tenths and hundredths	Estimate, concalculate dismeasures, imponey in publication. Solve simple and money	including ounds and le measure problems factions and o two		nd convert n analogue - and 24- ns involving om hours to utes to rs to months;	Interpret and discrete and data using a graphical mincluding batime graphs	d continuous appropriate sethods, ar charts and s. arison, sum nce sing n presented as, tables and	Identify act obtuse angle compare at angles up the angles by second compare angle compare angle compare angle compare and triangle their propersizes. Identify line symmetry in presented orientation complete and symmetric	ute and gles and nd order to two right ize. nd classify shapes, uadrilaterals es, based on erties and es of in 2-D shapes in different as. a simple figure with a specific line	Describe p 2-D grid as in the first Plot specif and draw s complete a polygon. Describe n between p translation	cositions on a scoordinates quadrant. Gied points sides to a given cositions as as of a given country left/ right cown.	Consolidation and Investigation

	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14
								ı		I		
								•				
Week 1 Week 2 Autumn 1 Place Value Read, write, order and colleast 1000000 and determined in the forwards or backwards of 10 for any given number forwards and backwards on the forwards of the forwards	ards in steps er up to 100 ers in contex with positive including the 100000 to 100000 and practical ove.	pers to at ue of each sof powers 0000. t, count e and rough zero. the nearest problems	Addition & Add and s mentally we numbers. Add and s numbers we digits, including the context of accuracy Solve addition a multi-step deciding we need to be added to the context of accuracy solve addition the context of accuracy solve additional multi-step deciding we need to be added to the context of accuracy solve additional multi-step deciding we need to be added to the context of accuracy solve additional multi-step deciding we need to the context of the context	Subtraction With increase With increase With more the suding using the subtract to check and the subtract	on hbers ingly large ole han 4 formal umnar ion) Use swers to rmine, in lem, levels btraction n contexts, tions and	Week 8 Autumn 2 Statistics Solve comsum and oproblems informatic presented graph. Complete, interpret informatic tables include timetables	parison, lifference using on in a line read and on in uding	Multiplicatio Multiply and d mentally draw facts. Multiply and d numbers by 10 Identify multip including findin pairs of a num common facto numbers. Recognise and numbers and c and the notatio (2) and cubed (Solve problems multiplication including using knowledge of fi multiples, squa	n & Division ivide numbers ing upon known ivide whole 0, 100 and 1000. bles and factors, ng all factor ber, and rs of two use square cube numbers on for squared 3) s involving and division g their factors and ares and cubes. the vocabulary bers, prime mposite (non- rs. ther a number ime and recall	Perimeter Measure a perimeter rectilinear Calculate a of rectangl and includiunits, cm2, of irregular	& Area nd calculate of composite shapes in compare es (including ing using state m2 estimate shapes.	the e n and m. the area g squares), ndard te the area

					Υ	ear 5					
Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Spring 1						Spring 2					
•	on & Division		Fractions							Percentages	
	divide number n known facts.	s mentally	Compare an number.	nd order fractio	ns whose den	ominators are	e multiples of th	e same		order and comp ree decimal pla	
two digit nun method, incl	nber using a for uding long mult		•	me and write e uding tenths ar	•	•	n fraction, repr	esented	_	id use thousand hs, hundredths	
number using	ers up to 4 digit	s by a one digit itten method of	the other ar	nd write mathe			convert from c mixed number			als with two de vhole number a e.	•
	for the contex			otract fractions the same num		e denominato	r and denomina	ators that are	Solve proble	ms involving nu al places.	mber up to
subtraction, a combination	ns involving ad multiplication a n of these, incl ng the use of th	nd division and uding	materials ar	nd diagrams. rite decimal nu	ımbers as frac	tions [for exa	e numbers, sup mple 0.71 = 711 ncluding scaling	00]	understand t of parts per l	nundred', and was a fraction wi	ates to 'number
			fractions an	d problems inv	olving simple	rates.			percentage a	ms which requir nd decimal equ nd those fractio of a multiple o	ivalents of 12, ns with a
									White Rose	End of Term	Assessment

						Year	5					
Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13
Summer 1						Summer 2						
Decimals				•	of Shapes &			& Direction	Convertin	<u> </u>	Volume	
Solve prob	lems involvi	ng number ເ	ıp to three		shapes, inclu	•	•	lescribe and	Identify ac		Estimate	
decimal pla	aces.				cuboids, from	1 2D		the position of a	obtuse an	•	volume [for	
				representa	tions.		•	owing a reflection	compare a		example	
	nd divide wh							tion, using the		to two right	using 1cm3	
involving d	lecimals by 1	.0, 100 and 1	1000.		perties of re	•		te language, and	angles by	size.	blocks to	
					ated facts an			t the shape has			build	
	r operations	•		missing len	gths and ang	les.	not chang	ged.		and classify	cuboids	
_	neasure [for	•							geometric		(including	
	oney] using	decimal not	ation,	_	between reg				_	quadrilaterals	cubes)] and	
including s	caling.				olygons base				_	les, based on	capacity	_
				reasoning a angles.	about equal s	ides and			their prop	erties and	[for	ior
									sizes.		example,	Consolidation and Investigation
				.,						c	using	est
				_	es are measu				Identify lin		water]	<u>N</u>
				_	stimate and c	•			symmetry		Use all four	pu
				acute, obti	ise and reflex	cangies.			shapes pro	esented in orientations.	operations	n a
				Duarre sires	امم ممامم				different c	mentations.	to solve	ıtio
				_	angles, and	measure			Complete	a simple	problems	lida
				them in de	grees					a simple c figure with	involving	osu
				Idontifu on					1 *	a specific	measure.	Cor
					ngles at a poin (total 360°),				line of syn	•	measure.	
					straight line a	-			line or syn	illictiy.		
				1 -	180°) other r				White Ros	se End of Term	Assessment	
				90°.	100 Jourer i	iluitipies oi			Winte No.	Se Elia of Term	Assessment	

						Year 6					
Week 1 Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13 Week 14
Autumn 1						Autumn 2					
Place Value	Addition,	Subtraction	n, Multiplic	ation & Div	vision	Fractions				Position &	Decimals
										Direction	
Read, write, order and			nbers ment	ally with in	creasingly			to simplify fr	•	Describe	Identify the value of
compare numbers up	large num	ibers.					•	express frac	tions in the	positions	each digit in
to 10,000,000 and determine the value	A al al a al a				- +l 4	same der	omination.			on the full coordinate	numbers given to 3
of each digit.				s with more		Camanana			.diaa fuaatiaaa	grid (all	decimal places and multiply numbers by
or each digit.	_			tten metho ion) Use ro		> 1	and order i	ractions, incit	uding fractions	four	10, 100 and 1,000
Round any whole				ıd determin		71				quadrants).	giving answers up to
number to a required			, levels of a		ie, ili tile	Generate	and describ	ne linear num	ber sequences	quadrants).	3 decimal places.
degree of accuracy.	CONTEXT OF	a problem	, icveis or a	ccuracy.		(with frac		oc iiiicai iiaiii	ber sequences	Draw and	o accimai piacesi
468.000.4004.407.	Solve add	ition and su	btraction m	nulti-step pi	roblems in	(With had				translate	Multiply one-digit
Use negative numbers				ions and me		Add and s	subtract fra	ctions with di	fferent	simple	numbers with up to
in context, and	use and w	_	•					nixed number		shapes on	2 decimal places by
calculate intervals		•					of equivalen		, 3	the	whole numbers. Use
across zero.										coordinate	written division
						Multiply	simple pairs	of proper fra	ctions, writing	plane, and	methods in cases
Solve number and						the answ	er in its sim	plest form [fo	r example 1/4	reflect	where the answer
practical problems						x 1/2 = 1/	8]			them in the	has up to 2 decimal
that involve all of the										axes.	places.
above.							•	ns by whole n	numbers [for		
						example	1/3 ÷ 2 = 1/	6]			Solve problems
											which require answers to be
								with division a			rounded to specified
							•	_	example, 0.375]		degrees of accuracy.
						for a simp	ole fraction	[for example	38]		degrees or accuracy.
						Possil sin	d 1100 0011	alences betwe	on simple		
							•		es, including in		
						different		na percentage	cs, including ill		
						directoric	contexts.				
						Year 6 M	ock SATs As	sessment			

					Yea	r 6					
Week 1 Wee	k 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Spring 1						Spring 2					
Percentage		Algebra		Converting	Units	Area, Perim	eter &	Ratio		Statistics	
						Volume					
Number: Percentage		Algebra Use	•	•	ems involving	Recognise t	•		ems involving		nd name parts
problems involving t		formulae Ge		the calculat			ne areas can		sizes of two	of circles, ir	•
calculation of percer	•	describe line	ear number	conversion			ent perimeters		where missing	radius, dian	
[for example, of mea		sequences.		-	sing decimal	and vice ver	sa.	values can b	•		nce and know
and such as 15% of 3	-			notation up				using intege		that the dia	
and the use of perce	ntages		sing number	decimal pla		Recognise w		multiplication		twice the ra	adius.
for comparison.		problems al	gebraically.	appropriate	2.	'	use formulae	division fact	IS.		
						for area and	l volume of				nd construct
Recall and use equiv		Find pairs of		Use, read, v		shapes.		·	ems involving	·	nd line graphs
between simple frac	•	•	an equation	convert bet			c		es where the	and use the	ese to solve
decimals and percen	_	with two un	knowns.	standard ur	nits,	Calculate th			is known or	problems.	
including in different	Į.	.		converting	nts of langth	parallelogra	ms and	can be foun	u.	Calaulata th	
contexts.		combination	possibilities of		ents of length, ne and time	triangles.		Colve proble	ama involvina		ne mean as an
		variables.	is of two	from a sma		Calculate	stimata and		ems involving	average.	
		variables.			a larger unit,	Calculate, e		unequal sha	_		
				and vice ve	_	and cuboids	lume of cubes	grouping us knowledge	-		
					tation to up to		its, including	and multiple			
				3dp.	tation to up to	cm3, m3 an			c 3.		
				July.		to other uni	•				
				Convert bet	tween miles	km3)	,,				
				and kilomet		Kill3)					
				Year 6 Moo	k SATs						
				Assessmen	t						

						Year 6						
Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13
Summer 1	<u> </u>					Summer 2						
Properties	s of	SATs revi	ision as	Securing Writter	n Methods For The	Four Rules	& Preparati	ion for KS3			Investigations	5
Shapes &	Angles		ate to the									
Draw 2-D	shapes		ATs tests in		nd subtraction mul		ems in con	texts, deciding	which		ake and justif	•
using give		week 4		operations and r	nethods to use and	l why.					imations of la	•
dimension	ns and										xplain metho	
angles.				• •	git number up to 4		!- digit num	ber using the f	formal	_	rally, make g	
				written method	of long multiplicati	on.					about patter	ns and
Compare a										-	s and solve	
classify ge					up to 4 digits by a 2	-		-			cal puzzles. U	
shapes ba					division, and interp			e number rem	ainders,	and order o	of operations.	
	erties and			fractions, or by r	ounding as approp	riate for the	context.					
sizes and f				D' 'de e elem	and Andrews	North Control		. (
unknown any triang	•				up to 4 digits by a 2	_	_		n metnod			
quadrilate				of short division,	interpreting remain	inders accor	aing to the	context.				
regular po				Dorform montal	calculations, includ	ling with mix	ad aparatio	one and large r	umbors			
regular po	nygons.				r factors, common	-	•	_	iuilibers.			
Recognise	angles			identity common	riactors, common	munipies an	a prime na	ilibers.				
where the	•			Use their knowle	edge of the order o	f onerations	to carry ou	t calculations i	nvolving			
a point, ar	•				ons. Solve problem	•	•		_			
straight lin				and division.	one problem	5 6 u	uai:::011, 5ux	reraction, mare	.p.iicacion			
vertically o	opposite,											
and find m	nissing			Use estimation t	o check answers to	calculations	and deteri	mine in the co	ntext of a			
angles.				problem, an app	ropriate degree of	accuracy.						
						•						
				KS2 SATS Exam								